Course Outcomes – Program Outcomes (COPO) Mapping

Program Outcomes (PO): B.Sc. (H) Chemistry

Learning Outcome-based Curriculum Framework (LOCF)

The LOCF approach is envisioned to provide a focused, outcome-based syllabus at the undergraduate level with an agenda to structure the teaching-learning experiences in a more student-centric manner

ABBREVIATIONS / NOMENCLATURE

Sno.	Nomenclature	Description	Aggregate Courses
1	PO	Program Outcome	PO1, PO2, PO3, PO4, PO5
2	СО	Course Outcome	CO1, CO2, CO3CO8
3	CC	Core Courses	CC1, CC2, CC3C14
4	DSE	Discipline Specific	DSE1, DSE2, DSE3, DSE4
		Electives	
5	GE	General Electives	GE1 , GE2, GE3, GE4

Program Outcomes (PO): B.Sc(H) Chemistry

UGCF (NEP)

Sno.	Program Outcomes (PO): B.Sc (H) Chemistry	Statements
1.	PO1	Knowledge: Students acquire theoretical knowledge and understanding of the fundamental concepts, principles and processes in main branches of chemistry, namely, organic chemistry, inorganic chemistry, physical chemistry, analytical chemistry and biochemistry. In depth understanding is the outcome of transactional effectiveness and treatment of specialized course contents. Width results from the choice of electives that students are offered.
2.	PO2	Laboratory Skills: A much valued learning outcome of this programme is the laboratory skills that students develop during the course. Quantitative techniques gained through hands on methods opens choice of joining the industrial laboratory work force early on. The programme also provides ample training in handling basic chemical laboratory instruments and their use in analytical and biochemical determinations. Undergraduates on completion of this programme can cross branches to join analytical, pharmaceutical, material testing and biochemical labs besides standard chemical laboratories.
3.	PO3	Communication: Communication is a highly desirable attribute to possess. Opportunities to enhance students' ability to write methodical, logical and precise reports are inherent to the structure of the programme. Techniques that effectively communicate scientific chemical content to large audiences are acquired through oral and poster presentations and regular laboratory report writing.
4	PO4	Capacity Enhancement: Modern day scientific environment requires students to possess ability to think independently as well as be able to work productively in groups. This requires some degree of balancing. The chemistry honours programme course is designed to take care of this important aspect of student development through effective teaching learning process.
5	PO5	Portable Skills: Besides communication skills, the programme develops a range of portable or transferable skills in students that they can carry with them to their new work environment after completion of chemistry honours programme. These are problem solving, numeracy and mathematical skills- error analysis, units

and conversions, information retrieval skills, IT skills and organizational skills. These are valued across work
environments

Course Outcomes (CO): B.Sc (H) Chemistry

SEMESTER 1:							
	CC1: ATOMIC STRUCTURE & CHEMICAL BONDING (INORGANIC CHEMISTRY – I)						
Unique Paper Code	Name of the Paper	Course Outcome: CO	Statement				
32171101	Atomic Structure & Chemical Bonding (Inorganic Chemistry-I)	CO1	The course enables the students to solve the conceptual questions using the knowledge gained by studying the quantum mechanical model of the atom, quantum numbers, electronic configuration, radial and angular distribution curves, shapes of s, p and d orbitals, and periodicity in atomic radii, ionic radii, ionization enthalpy and electron affinity of elements.				
		CO2	The students can draw the plausible structures and geometries of molecules using radius ratio rules, VSEPR theory and MO diagrams (homo- & hetero-nuclear diatomic molecules).				
		CO3	The students understand the concept of lattice energy using Born-Landé and Kapustinskii equation.				
		CO4	Rationalize the conductivity of metals, semiconductors and insulators based on the Band theory.				
		CO5	Understand the importance and application of chemical bonds, inter-molecular and intramolecular weak chemical forces and their effect on melting points, boiling points, solubility and energetics of dissolution.				
	CC2: STATES OF MATTER & IONIC EQUILIBRIUM (PHYSICAL CHEMISTRY - I)						
32171102	States of Matter & Ionic	CO1	By the end of this course, the students can derive mathematical expressions for				

	Equilibrium		different properties of gas and liquid and
	(Physical		understand their physical significance.
	Chemistry-I)	CO2	They can apply the concepts of gas
	5 /		equations and liquids while studying other
			chemistry courses and every-day life.
		CO3	Explain the crystal structure and calculate
			related properties of cubic systems.
		CO4	Explain the concept of ionization of
			electrolytes with emphasis on weak acid and
			base and hydrolysis of salt.
ATOMI	C STRUCTURE, B	ONDING, O	HONOURS): GENERAL ORGANIC CHEMISTRY & YDROCARBONS
32175901	Atomic Structure, Bonding, General Organic Chemistry & Aliphatic Hydrocarbons	CO1	The students are able to solve the conceptual questions using the knowledge gained by studying the quantum mechanical model of the atom, quantum numbers, electronic configuration, radial and angular distribution curves, and shapes of s, p, and d orbitals and periodicity in atomic radii, ionic radii, ionization energy and electron affinity of elements.
		CO2	Draw the plausible structures and geometries of molecules using radius ratio rules, VSEPR theory and MO diagrams (homo- & hetero-nuclear diatomic molecules).
		CO3	Understand and explain the differential behavior of organic compounds based on fundamental concepts learnt.
		CO4	Formulate the mechanism of organic reactions by recalling and correlating the fundamental properties of the reactants involved.
		CO5	Learn and identify many organic reaction mechanisms including free radical substitution, electrophilic addition and electrophilic aromatic substitution.

		SEMESTER I: COPO MAPPING					
Papers			Program Ou	tcome : PO			
	Course Outcome: CO	PO1	PO2	PO3	PO4	PO5	
	CO1	\checkmark				\checkmark	
CC1	CO2					\checkmark	
	CO3	\checkmark					
	CO4					\checkmark	
	CO5	\checkmark					
	CO1	\checkmark					
	CO2	\checkmark				\checkmark	
CC2	CO3					\checkmark	
	CO4	\checkmark					
GE1	CO1	\checkmark				\checkmark	
	CO2					\checkmark	
	CO3	\checkmark					
	CO4				\checkmark		
	CO5	\checkmark					

SEMESTER 2: CC3: BASICS AND HYDROCARBONS (ORGANIC CHEMISTRY – I) Unique Name of the Course Paper Paper Statement **Outcome:** Code CO 32171201 The students understand and explain the Basics and CO1 Hydrocarbons different nature and behavior of organic (Organic compounds based on fundamental Chemistry – I) concepts learnt. Formulate the mechanism of organic CO₂ reactions by recalling and correlating the fundamental properties of the reactants involved. Learn and identify many organic CO3 reaction mechanisms including Free Radical Substitution, Electrophilic Addition and Electrophilic Aromatic Substitution.

		CO4	Understand the fundamental concepts of					
			stereochemistry.					
CC4	CC4: CHEMICAL THERMODYNAMICS AND ITS APPLICATIONS (PHYSICAL CHEMISTRY – II)							
32171202	Chemical Thermodynamics and its Applications	CO1	The students understand the three laws of thermodynamics, concept of State and Path functions, extensive and intensive properties.					
	(Physical Chemistry – II)	CO2	They are able to derive the expressions of ΔU , ΔH , ΔS , ΔG , ΔA for an ideal gas under different conditions.					
		CO3	They can explain the concept of partial molar properties.					
		CO4	Explain the thermodynamic basis of colligative properties and applications in surroundings					
GE 2 (F	-		RY OF S- AND P-BLOCK ELEMENTS, ND CHEMICAL KINETICS					
32175917	Chemistry of s- and p-Block	CO1	The students understand the chemistry and applications of s- and p-block elements.					
	Elements, States of Matter and Chemical	CO2	Derive ideal gas law from kinetic theory of gases and explain why the real gases deviate from ideal behaviour.					
	Kinetics	CO3	Explain Maxwell-Boltzmann distribution, critical constants and viscosity of gases.					
		CO4	Explain the properties of liquids especially surface tension and viscosity.					
		CO5	Explain symmetry elements, crystal structure specially NaCl, KCl and CsCl					
		CO6	Define rate of reactions and the factors that affect the rates of reaction.					
		CO7	Understand the concept of rate laws e.g., order, molecularity, half-life and their determination.					
		CO8	Learn about various theories of reaction rates and how these account for experimental observations.					

	SEMESTER II: COPO MAPPING					
Papers	Program Outcome : PO					
	Course	PO1	PO2	PO3	PO4	PO5
	Outcome:					
	CO					
	CO1	\checkmark				
CC3	CO2				\checkmark	
	CO3					\checkmark
	CO4	\checkmark				
	CO1	\checkmark				
004	CO2	\checkmark				
CC4	CO3			\checkmark		
	CO4	\checkmark				
	CO1	\checkmark				
GE2	CO2	\checkmark				\checkmark
	CO3	\checkmark				
	CO4	\checkmark				
	CO5	\checkmark				
	CO6	\checkmark				
	CO7					\checkmark
	CO8	\checkmark				

SEMESTER 3:

CC5: S- AND P-BLOCK ELEMENTS (INORGANIC CHEMISTRY – II)

Unique Paper Code	Name of the Paper	Course Outcome: CO	Statement
32171301	s- and p- Block Elements (Inorganic Chemistry – II)	CO1 CO2	The students learn the fundamental principles of metallurgy and understand the importance of recovery of byproducts during extraction. Understand the basic and practical applications in various fields of metals and alloy behavior and their manufacturing processes.
		CO3	Apply the thermodynamic concepts like that of Gibbs energy and entropy to the principles of extraction of metals.

CO4	Understand the periodicity in atomic and ionic radii, electronegativity, ionization energy, electron affinity of elements of the periodic table.
CO5	Understand oxidation states with reference to elements in unusual and rare oxidation states like carbides and nitrides.
CO6	Understand vital role of sodium, potassium, calcium and magnesium ions in biological systems and the use of caesium in devising photoelectric cells.

CC6: HALOGENATED HYDROCARBONS AND OXYGEN CONTAINING FUNCTIONAL GROUPS (ORGANIC CHEMISTRY – II)

32171302	Halogenated	CO1	The students understand preparation,
	Hydrocarbons		properties and reactions of haloalkanes,
	and Oxygen		haloarenes and oxygen containing
	Containing		functional groups.
	Functional	CO2	Use the synthetic chemistry learnt in this
	Groups (Organic		course to do functional group
	Chemistry – II)		transformations.
		CO3	To propose plausible mechanisms for any
			relevant reaction.

CC7: PHASE EQUILIBRIA AND ELECTROCHEMICAL CELLS (PHYSICAL CHEMISTRY – III)

32171303	Phase Equilibria	CO1	Understand phase equilibrium, criteria,
	and		CST, Gibbs-Duhem-Margules equation.
	Electrochemical	CO2	Learn the working of electrochemical cells,
	Cells (Physical		galvanic cell, corrosion and happenings in
	Chemistry)		surroundings related to electrochemistry.

GE 3 (FOR HONOURS):

CHEMICAL ENERGETICS, EQUILIBRIA AND FUNCTIONAL GROUP ORGANIC CHEMISTRY-I

32175902	Chemical Energetics,	CO1	The students understand the laws of thermodynamics, thermochemistry and equilibria.
	Equilibria and Functional Group Organic	CO2	Understand concept of pH and its effect on the various physical and chemical properties of the compounds.

Chemistry-I	CO3	Use the concepts learnt to predict feasibility of chemical reactions and to study the behaviour of reactions in equilibrium.
	CO4	Understand the fundamentals of functional group chemistry through the study of methods of preparation, properties and chemical reactions with underlying mechanism.
	CO5	Use concepts learnt to understand stereochemistry of a reaction and predict the reaction outcome.
	CO6	Design newer synthetic routes for various organic compounds.

		SEMESTER III: COPO MAPPING							
Papers		Program Outcome : PO							
	Course	PO1	PO2	PO3	PO4	PO5			
	Outcome:								
	CO								
	CO1	\checkmark							
CC5	CO2	\checkmark							
	CO3					\checkmark			
	CO4	\checkmark							
	CO5	\checkmark							
	CO6	\checkmark							
	CO1	\checkmark							
aac	CO2					\checkmark			
CC6	CO3				\checkmark				
CC7	CO1	\checkmark							
	CO2	\checkmark	\checkmark						
GE3	CO1	\checkmark							
	CO2	\checkmark							
	CO3					\checkmark			
	CO4	\checkmark							
	CO5				\checkmark	\checkmark			
	CO6			\checkmark		\checkmark			

SEMESTER 4:

CC8: COORDINATION CHEMISTRY (INORGANIC CHEMISTRY – III)

Unique Paper Code	Name of the Paper	Course Outcome: CO	Statement
32171401	Coordination Chemistry (Inorganic Chemistry – III)	CO1	The course enables the students to understand the terms, ligand, denticity of ligands, chelate, coordination number and use standard rules to name coordination compounds.
		CO2	Discuss the various types of isomerism possible in such compounds and understand the types of isomerism possible in a metal complex.
		CO3	Use Valence Bond Theory to predict the structure and magnetic behaviour of metal complexes and understand the terms inner and outer orbital complexes
		CO4	Explain the meaning of the terms $\Delta o.$, Δt , pairing energy, CFSE, high spin and low spin and how CFSE affects thermodynamic properties like lattice enthalpy and hydration enthalpy
		CO5	Explain magnetic properties and colour of complexes on basis of Crystal Field Theory
		CO6	Understand the important properties of transition metals like variable oxidation states, colour, magnetic and catalytic properties and use Latimer diagrams to predict and identify species which are reducing, oxidizing and tend to disproportionate and calculate skip step potentials
		CO7	Understand reaction mechanisms of coordination compounds and differentiate between kinetic and thermodynamic stability.

CC9: NITROGEN CONTAINING FUNCTIONAL GROUPS, POLYNUCLEAR HYDROCARBONS, HETEROCYCLIC CHEMISTRY, ALKALOIDS AND TERPENES (ORGANIC CHEMISTRY – III)

32171402	Nitrogen containing functional groups,	CO1	The students gain theoretical understanding of chemistry of compounds having nitrogen containing functional groups, heterocyclics, polynuclear hydrocarbons, alkaloids and terpenes which includes various methods for
	Polynuclear Hydrocarbons, Heterocyclic		synthesis through application of the synthetic organic chemistry concepts learnt so far.
	Chemistry, Alkaloids and Terpenes (Organic Chemistry – III)	CO2	Become familiar with their particular properties, chemical reactions, criterion of aromaticity with reference to polynuclear hydrocarbons and heterocyclic compounds, trends in basicity of amines and heterocyclic compounds and their behaviour at different pH.
		CO3	Learn practical approach to structural elucidation of organic compounds with specific examples of terpenes and alkaloids.
		CO4	Predict the carbon skeleton of amines and heterocyclic compounds via use of Hoffmann's exhaustive methylation and Emde's modification methods.
		CO5	Understand the applications of these compounds including their medicinal applications through their reaction chemistry.

CC10: CONDUCTANCE & CHEMICAL KINETICS (PHYSICAL CHEMISTRY IV)

		CO1	The students can explain the chemistry of
	Conductance &		conductance and its variation with dilution,
32171403	Chemical		migration of ions in solutions.
	Kinetics	CO2	Learn the applications of conductance
	(Physical		measurements.
	Chemistry - IV)	CO3	Have understanding of rate law and rate of
			reaction, theories of reaction rates and
			catalysts; both chemical and enzymatic.
		CO4	Have knowledge of the laws of absorption
			of light energy by molecules and the
			subsequent photochemical reactions.

GE 4 (FOR HONOURS): ORGANOMETALLICS, BIOINORGANIC CHEMISTRY, POLYNUCLEAR HYDROCARBONS AND UV, IR SPECTROSCOPY

20175017	0 (11)	001	
32175917	Organometallics,	CO1	The students understand the chemistry and
	Bioinorganic		applications of 3d elements including their

Chemistry, Polynuclear Hydrocarbons and UV, IR		oxidation states and important properties of the familiar compounds potassium dichromate, potassium permanganate and potassium ferrocyanide.
Spectroscopy	CO2	Use IR data to explain the extent of back bonding in carbonyl complexes.
	CO3	Get a general idea of toxicity of metal ions through the study of Hg2+ and Cd2+ in the physiological system
	CO4	Understand the fundamentals of functional group chemistry, polynuclear hydrocarbons and heterocyclic compounds through the study of methods of preparation, properties and chemical reactions with underlying mechanism.
	CO5	Gain insight into the basic fundamental principles of IR and UV-Vis spectroscopic techniques.
	CO6	Use basic theoretical principles underlying UV-visible and IR spectroscopy as a tool for functional group identification in organic molecules

		SEMESTER IV: COPO MAPPING					
Papers			Program Out	tcome : PO			
	Course	PO1	PO2	PO3	PO4	PO5	
	Outcome:						
	CO						
	CO1	\checkmark					
CC8	CO2	\checkmark					
	CO3	\checkmark				\checkmark	
	CO4	\checkmark					
	CO5	\checkmark					
	CO6	\checkmark			\checkmark		
	CO7	\checkmark					
	CO1	\checkmark					
GG 0	CO2	\checkmark					
CC9	CO3	\checkmark					
	CO4					\checkmark	
	CO5	\checkmark					

CC10	CO1	\checkmark			
	CO2	\checkmark			
	CO3	\checkmark			
	CO4	\checkmark		\checkmark	
	CO1	\checkmark			
GE4	CO2			\checkmark	
	CO3	\checkmark			
	CO4	\checkmark			
	CO5	\checkmark			
	CO6				\checkmark

		SEMES	STER 5:
	CC11: BIOMOL	ECULES (O	RGANIC CHEMISTRY – IV)
Unique Paper Code	Name of the Paper	Course Outcome: CO	Statement
32171501	Biomolecules (Organic	CO1	The students understand and demonstrate how structure of biomolecules determines their reactivity and biological functions.
	Chemistry – IV)	CO2	Gain insight into concepts of heredity through the study of genetic code, replication, transcription and translation.
		CO3	Demonstrate understanding of metabolic pathways, their inter-relationship, regulation and energy production from biochemical processes.
32171502	_		STRY & SPECTROSCOPY IEMISTRY – V) The students learn about limitations of classical mechanics and solution in terms of quantum mechanics for atomic/molecular
	Spectroscopy (Physical Chemistry – V)	CO2	systems. Develop an understanding of quantum mechanical operators, quantization, probability distribution, uncertainty principle and application of quantization to spectroscopy.

		CO3	Interpret various types of spectra and know about their application in structure elucidation.
	DSE1: 1	NOVEL IN	ORGANIC SOLIDS
	Novel Inorganic	CO1	The students understand the mechanism of solid-state synthesis.
32177901	Solids	CO2	Explain about the different characterization techniques and their principle.
		CO3	Understand the concept of nanomaterials, their synthesis and properties.
		CO4	Explain the mechanism of growth of self- assembled nanostructures.
		CO5	Appreciate the existence of bioinorganic nanomaterials.
		CO6	Explain the importance of composites, conducting polymers and their applications.
		CO7	Understand the usage of solid materials in various instruments, batteries, etc. which would help them to appreciate the real life importance of these materials
			The students understand the twelve
32177908	Green Chemistry	CO1	The students understand the twelve principles of green chemistry and will build the basic understanding of toxicity, hazard
02177900		CO2	and risk of chemical substances. Understand stoichiometric calculations and
			relate them to green chemistry metrics. They will learn about atom economy and how it is different from percentage yield.
		CO3	Learn to design safer chemicals, products and processes that are less toxic than current alternatives. Hence they will understand the meaning of inherently safer design for accident prevention and the principle "what
			you don't have can't harm you"
		CO4	Understand benefits of use of catalyst and bio catalyst, use of renewable feed stock which helps in energy efficiency and protection of the environment, renewable
			energy sources, importance led reactions in various green solvents.
	1	CO5	Appreciate the use of green chemistry in

	valuable skills to innovate and find out solution to environmental problems. Thus the students are able to realise that chemistry can be used to solve rather than cause environmental problems.
CO6	Green chemistry is a way to boost profits, increase productivity and ensure sustainability with absolute zero waste. Success stories and real world cases also motivate them to practice green chemistry. These days. customers are demanding to know about a product: Is it green? Does it contribute to global warming? Was it made from non depletable resources? Students have many career opportunities as " green" is the path to success.

	SEMESTER V: COPO MAPPING						
Papers	Program Outcome : PO						
	Course	PO1	PO2	PO3	PO4	PO5	
	Outcome:						
	CO	<u>.</u>					
	CO1	\checkmark					
CC11	CO2	\checkmark					
	CO3			\checkmark			
	CO1	\checkmark					
0010	CO2	\checkmark					
CC12	CO3	\checkmark				\checkmark	
	CO1	\checkmark					
DOD1	CO2	\checkmark					
DSE1	CO3	\checkmark					
	CO4	\checkmark					
	CO5				\checkmark		
	CO6			\checkmark			
	CO7					\checkmark	
	CO1	\checkmark					
DSE2	CO2					\checkmark	
	CO3				\checkmark		
	CO4	\checkmark					
	CO5					\checkmark	
	CO6				\checkmark		

SEMESTER 6:

CC13: ORGANOMETALLIC CHEMISTRY & BIO-INORGANIC CHEMISTRY (INORGANIC CHEMISTRY – IV)

Unique Paper Code	Name of the Paper	Course Outcome: CO	Statement
	Organometallic	CO1	Understand and explain the basic principles of qualitative inorganic analysis.
32171601	Chemistry & Bio-inorganic Chemistry	CO2	Apply 18-electron rule to rationalize the stability of metal carbonyls and related species.
	(Inorganic Chemistry – IV)	CO3	Understand the nature of Zeise's salt and compare its synergic effect with that of carbonyls.
		CO4	Identify important structural features of the metal alkyls tetrameric methyl lithium and dimeric trialkyl aluminium and explain the concept of multicenter bonding in these compounds
		CO5	Diagrammatically explain the working of the sodium-potassium pump in organisms and the factors affecting it and understand and describe the active sites and action cycles of the metalloenzymes carbonic anhydrase and carboxypeptidase.
		CO6	Explain the sources and consequences of excess and deficiency of trace metals and learn about the toxicity of certain metal ions, the reasons for toxicity and antidotes.
		CO7	Explain the use of chelating agents in medicine and, specifically, the role of cisplatin in cancer therapy and explain the applications of iron in biological systems with particular reference to haemoglobin, myoglobin, ferritin and transferrin.
		CO8	Get a general idea of catalysis and describe in detail the mechanism of Wilkinson's catalyst, Zeigler- Natta catalyst and synthetic gasoline manufacture by Fischer- Tropsch process.

CC14: SPECTROSCOPY AND APPLIED ORGANIC CHEMISTRY (ORGANIC CHEMISTRY – V)

Spectroscopy	CO1	Gain insight into the basic principles of UV, IR and NMR spectroscopic techniques.
1 10	CO2	Use spectroscopic techniques to determine
11	02	structure and stereochemistry of known and
U U		-
•		unknown compounds.
	CO3	Develop a sound understanding of the
Chemistry – V)		structure of Pharmaceutical Compounds.
		They will also understand the importance of
		different classes of drugs and their
		applications for treatment of various
		diseases.
	CO4	Learn about the chemistry of natural and
		synthetic polymers including fabrics and
		rubbers.
	CO5	Understand the chemistry of biodegradable
		and conducting polymers and appreciate the
		need of biodegradable polymers with
		emphasis on basic principles.
	CO6	Learn about the theory of colour and
		constitution as well as the chemistry of
		dyeing.
	CO7	Know applications of various types of dyes
		including those in foods and textiles
	Spectroscopy and Applied Organic Chemistry (Organic Chemistry – V)	Spectroscopy and AppliedCO2Organic Chemistry (Organic Chemistry – V)CO3Chemistry – V)CO4CO4CO5

DSE3: APPLICATIONS OF COMPUTERS IN CHEMISTRY

		I	F
32177903	Applications of Computers in	CO1	Have knowledge of most commonly used commands and library functions used in QBASIC programming.
	Chemistry		QBASIC programming.
		CO2	Develop algorithm to solve problems and
			write corresponding programs in BASIC for
			performing calculations involved in
			laboratory experiments and research work.
		CO3	Use various spreadsheet software to perform
			theoretical calculations and plot graphs.

DSE4: INSTRUMENTAL METHODS OF CHEMICAL ANALYSIS

		CO1	The students will be able to handle
Instrumental			analytical data.
32177910	Methods of	CO2	Understand basic components of IR, FTIR,
			UV-Visible and Mass spectrometer.

Chemical	CO3	Interpret of IR, FTIR, UV-visible spectra
Analysis		and their applications.
	CO4	Understand the use of single and double
		beam instruments.
	CO5	Learn separations techniques like
		Chromatography.
	CO6	Learn elemental analysis, NMR
		spectroscopy, Electroanalytical Methods,
		Radiochemical Methods, X-ray analysis and
		electron spectroscopy.

	SEMESTER IV: COPO MAPPING						
Papers	Program Outcome : PO						
	Course	PO1	PO2	PO3	PO4	PO5	
	Outcome:						
	CO						
CC13	C01	\checkmark				· · · · · ·	
CCIS	CO2					\checkmark	
	CO3	\checkmark					
	CO4						
	CO5				\checkmark		
	CO6			\checkmark			
	CO7			\checkmark			
	CO8	\checkmark					
	CO1	\checkmark					
	CO2					\checkmark	
CC14	CO3	\checkmark					
	CO4	\checkmark					
	CO5				\checkmark		
	CO6	\checkmark					
	CO7	\checkmark					
	CO1					\checkmark	
DSE3	CO2					\checkmark	
	CO3					\checkmark	
DSE4	CO1		\checkmark				
	CO2	\checkmark					
	CO3					\checkmark	
	CO4	\checkmark					
	CO5		\checkmark				
	CO6		\checkmark			\checkmark	